<del id="8coai"></del>
<fieldset id="8coai"></fieldset>
<ul id="8coai"><sup id="8coai"></sup></ul>
<ul id="8coai"><sup id="8coai"></sup></ul>
  • <fieldset id="8coai"><input id="8coai"></input></fieldset>
    您好,歡迎進(jìn)入北京樂氏聯(lián)創(chuàng)科技有限公司網(wǎng)站!
    一鍵分享網(wǎng)站到:
    產(chǎn)品列表

    —— PROUCTS LIST

    技術(shù)文章Article 當(dāng)前位置:首頁(yè) > 技術(shù)文章 > 傅里葉紅外變換通俗易懂的理答

    傅里葉紅外變換通俗易懂的理答

    點(diǎn)擊次數(shù):2525 發(fā)布時(shí)間:2021-05-12

       關(guān)于傅立葉變換,無論是書本還是在網(wǎng)上可以很容易找到關(guān)于傅立葉變換的描述,但是大都是些故弄玄虛的文章,太過抽象,盡是一些讓人看了就望而生畏的公式的羅列,讓人很難能夠從感性上得到理解。

       那么,到底什么是傅里葉變換算法列?傅里葉變換所涉及到的公式具體有多復(fù)雜列?
    傅里葉變換(Fourier transform)是一種線性的積分變換。因其基本思想首先由法國(guó)學(xué)者傅里葉系統(tǒng)地提出,所以以其名字來命名以示紀(jì)念。
     

     

       傅里葉變換原來就是一種變換而已,只是這種變換是從時(shí)間轉(zhuǎn)換為頻率的變化。這下,你就知道了,傅里葉就是一種變換,一種什么變換列?就是一種從時(shí)間到頻率的變化或其相互轉(zhuǎn)化。

       ok,咱們?cè)賮砜傮w了解下傅里葉變換,讓各位對(duì)其有個(gè)總體大概的印象,也順便看看傅里葉變換所涉及到的公式,究竟有多復(fù)雜:

       首先知識(shí)點(diǎn)先排除,什么是正余弦波,首先,直角三角形中,∠C=90°;任意一銳角∠A的對(duì)邊與斜邊的比叫做∠A的正弦,也就是sinA=a/c。∠A的余弦是它的鄰邊比三角形的斜邊,所以co sA=b/c。

       其中  K(t,u) 就是積分變換的核 (kernel)。這個(gè)積分變換的“物理含義”就是, f(t) 在核函數(shù)的復(fù)共軛這一組正交基上的展開系數(shù)。為什么呢?如果大家學(xué)過一點(diǎn)線性代數(shù),就可以發(fā)現(xiàn)積分變換具有內(nèi)積的形式。將 u' 看作參數(shù),如果  K(u',t) 和  K(u,t) 正交,則積分變換無非是給出了向量 \vec 在基函數(shù)  K^*(t,u)  上投影 / 分量的通式。要注意的是,這里的基函數(shù)不是  K(t,u) 而是  K^*(t,u) 。這是因?yàn)椋瑑?nèi)積的結(jié)果是一個(gè)“數(shù)”而不是向量,所以作為向量的兩個(gè)被乘函數(shù)必須有一個(gè)要被取復(fù)共軛(相當(dāng)于轉(zhuǎn)置)。以上推理從內(nèi)積的狄拉克括號(hào)表示的角度看很容易理解: (Tf)(u) = \langle K^*|f \rangle  ——左矢括號(hào) \langle | 自帶轉(zhuǎn)置效果,要符合原定義則 bra 內(nèi)必須是 K^* 。

       在以上的討論中我提到了向量 \vec ,那它與函數(shù) f(t) 又是什么關(guān)系呢?不妨想象一下普通空間的三維矢量 \vec\equiv(a,b,c) ,其中的 a,b,c 也無非是向量 \vec 在  \vec,\vec,\vec 基矢上的展開系數(shù)。也就是說,我們可以通過寫出一個(gè)矢量在所有基矢量方向的展開系數(shù)以及所有基矢量的方式*確定一個(gè)向量。如果把任何一個(gè)函數(shù)的自變量的任意一個(gè)(或者一組,對(duì)于多元函數(shù)來說)可能的取值看作一個(gè)基矢,函數(shù)值看作展開系數(shù),那么,任何函數(shù)都可以看作是一個(gè)向量的一個(gè)具體表示。當(dāng)然了,如果仔細(xì)推導(dǎo)一下,函數(shù) f(x) 的一組正交基實(shí)際上是 \delta(x) (狄拉克 \delta  函數(shù))。
     

     

       傅里葉分析不僅僅是一個(gè)數(shù)學(xué)工具,更是一種可以*顛覆一個(gè)人以前世界觀的思維模式。但不幸的是,傅里葉分析的公式看起來太復(fù)雜了,所以很多大一新生上來就懵圈并從此對(duì)它深惡痛絕。老實(shí)說,這么有意思的東西居然成了大學(xué)里的殺手課程,不得不歸咎于編教材的人實(shí)在是太嚴(yán)肅了。(您把教材寫得好玩一點(diǎn)會(huì)死嗎?會(huì)死嗎?)所以我一直想寫一個(gè)有意思的文章來解釋傅里葉分析,有可能的話高中生都能看懂的那種。所以,不管讀到這里的您從事何種工作,我您都能看懂,并且一定將體會(huì)到通過傅里葉分析看到世界另一個(gè)樣子時(shí)的快感。至于對(duì)于已經(jīng)有一定基礎(chǔ)的朋友,也希望不要看到會(huì)的地方就急忙往后翻,仔細(xì)讀一定會(huì)有新的發(fā)現(xiàn)。

     


    版權(quán)所有 © 2025 北京樂氏聯(lián)創(chuàng)科技有限公司

    總流量:959164  管理登陸  技術(shù)支持:化工儀器網(wǎng)  GoogleSitemap

    ICP備案號(hào):京ICP備06061264號(hào)-2
    主站蜘蛛池模板: 国产精品爽爽ⅴa在线观看| 亚洲线精品一区二区三区影音先锋 | 久久亚洲精品无码AV红樱桃| 国产成人精品免费视频大全| 国产精品日本欧美一区二区| 人人妻人人澡人人爽人人精品97 | 亚洲精品WWW久久久久久| 国产精品无码素人福利| 久久精品成人国产午夜| 国产精品vⅰdeoxxxx国产| 最新国产精品精品视频| 久久人人超碰精品CAOPOREN| 国产久爱免费精品视频| 国产福利精品视频自拍 | 亚洲国产精品无码久久久秋霞2 | 人妻精品久久久久中文字幕| 国产精品一级AV在线播放| 精品国精品国产| 国产精品免费观看调教网| 日韩精品中文字幕无码一区| 最新国产精品无码| 亚洲精品成人区在线观看| 四虎国产精品永久地址入口| 蜜臀av无码人妻精品| 久久无码精品一区二区三区| 久久精品国产精品亚洲人人| 国产精品亚洲美女久久久| 国产成人精品一区在线| 国产成人精品免高潮在线观看| 91精品国产综合久久香蕉| 99久久人人爽亚洲精品美女| 亚洲国产精品久久66| 国产L精品国产亚洲区久久| 国产2021久久精品| 国产精品免费观看视频| 国产这里有精品| 欧美在线精品一区二区三区 | 麻豆精品| 亚洲国产精品无码久久SM| 久久亚洲精品成人AV| 国产精品美女久久久m|